Understanding Basic Airflow Issues in Mobile Home Ductwork

Understanding Basic Airflow Issues in Mobile Home Ductwork

Overview of HVAC systems commonly found in mobile homes

In the realm of mobile homes, maintaining a comfortable living environment hinges significantly on the efficiency of the ductwork system. Unfortunately, common airflow problems within these systems can compromise comfort and energy efficiency. Understanding these basic airflow issues is essential for homeowners seeking to optimize their living conditions and reduce energy costs.


One prevalent issue in mobile home ductwork is inadequate design or installation. Ductwork in mobile homes is often smaller and requires precise installation best hvac system for mobile home knowledge. Mobile homes are often manufactured with compact spaces in mind, which can result in ductwork that is too small or improperly configured. This can lead to restricted airflow, causing some areas of the home to be warmer or cooler than others. To mitigate this problem, it's crucial for homeowners to ensure that their ductwork is appropriately sized and laid out to facilitate balanced air distribution throughout the home.


Another challenge faced by mobile homeowners is duct leakage. Over time, ducts may develop leaks due to wear and tear or poor initial construction. These leaks allow conditioned air to escape before it reaches its intended destination, leading to reduced efficiency and higher energy bills. Regular inspection and sealing of any gaps or holes in the ductwork can help maintain optimal airflow and improve overall system performance.


Blockages are also a common culprit behind airflow issues in mobile home duct systems. Debris such as dust, dirt, or even pests can accumulate within ducts, obstructing the flow of air. This not only diminishes the effectiveness of heating and cooling but can also pose health risks by circulating contaminants through the indoor environment. Routine cleaning of ducts is recommended to prevent blockages and promote cleaner air circulation.


Lastly, many mobile homes suffer from poorly insulated ductwork. Inadequate insulation allows external temperatures to affect the air traveling through the ducts, resulting in heat loss during winter months or heat gain during summer months. Properly insulating ductwork helps maintain desired temperatures more efficiently while reducing strain on HVAC systems.


Addressing these common airflow problems involves a combination of regular maintenance and thoughtful upgrades where necessary. Homeowners should prioritize routine inspections by qualified professionals who can identify potential issues before they escalate into major problems. By understanding and tackling these basic airflow challenges, those living in mobile homes can enjoy improved comfort levels while benefiting from enhanced energy savings-a win-win situation that underscores the importance of well-maintained ductwork systems.

Understanding the causes of restricted airflow in duct systems is crucial, particularly when dealing with mobile home ductwork. Mobile homes, due to their unique construction and space constraints, present distinct challenges when it comes to maintaining efficient airflow. Addressing these issues is essential for ensuring optimal indoor air quality, comfort, and energy efficiency.


One of the primary causes of restricted airflow in mobile home duct systems is poor design and installation. Due to limited space, ducts are often installed in tight or awkward configurations that can impede the flow of air. Sharp bends and excessive turns create resistance within the system, leading to reduced airflow. Additionally, undersized ducts are a common problem in mobile homes. When ducts are too small for the volume of air they need to transport, it results in increased friction and decreased efficiency.


Another significant cause of restricted airflow is blockages within the ductwork. Over time, dust, dirt, and debris can accumulate inside ducts, especially if they are not regularly cleaned or maintained. These obstructions can significantly diminish the amount of air that passes through the system. In some cases, pests such as rodents or insects may also nest within ducts, further blocking airflow.


Leaks and disconnections present another challenge to maintaining proper airflow in mobile home duct systems. As these homes settle over time or experience shifts due to environmental factors like temperature changes or ground movement, duct connections can become loose or disconnected entirely. This not only allows conditioned air to escape but also lets unconditioned air enter the system, reducing overall efficiency and potentially introducing contaminants into living spaces.


Insufficient insulation around ducts can exacerbate these issues by causing temperature fluctuations that affect pressure and flow rates within the system. Without adequate insulation, heat loss or gain occurs more readily as conditioned air travels through unconditioned spaces like crawlspaces or attics.


Finally, inadequate maintenance plays a significant role in causing restricted airflow in mobile home duct systems. Regular inspections and cleaning are necessary to ensure that any developing problems are addressed promptly before they escalate into more severe issues.


In conclusion, understanding the causes of restricted airflow in mobile home duct systems involves recognizing several interconnected factors: poor design choices during initial construction; blockages from debris buildup; leaks caused by structural shifts; inadequate insulation; and neglectful maintenance practices contribute significantly towards this problem. By addressing these potential issues proactively through careful planning during installation combined with consistent upkeep efforts throughout a home's lifespan-homeowners can help guarantee healthier environments while maximizing their heating/cooling efficiencies simultaneously ensuring comfort inside their dwellings year-round regardless outside weather conditions might be prevailing at any given moment!

Surge in Mobile Home Air Conditioning Repairs amid Rising Summer Temperatures

Surge in Mobile Home Air Conditioning Repairs amid Rising Summer Temperatures

As global temperatures continue to rise, the effects of climate change are increasingly tangible, permeating various aspects of daily life.. Among the many sectors impacted by these climatic shifts, mobile home living conditions stand out as particularly vulnerable.

Posted by on 2024-12-29

Local Technicians Report Frequent Thermostat Malfunctions in Mobile Home HVAC Systems

Local Technicians Report Frequent Thermostat Malfunctions in Mobile Home HVAC Systems

In the realm of mobile home living, maintaining a comfortable indoor environment often hinges on the efficient operation of the HVAC system.. A prevalent issue reported by local technicians is frequent thermostat malfunctions that disrupt this essential comfort.

Posted by on 2024-12-29

Routine Tuneups Gain Popularity among Mobile Home Residents for Lower Energy Bills

Routine Tuneups Gain Popularity among Mobile Home Residents for Lower Energy Bills

As mobile home living continues to gain popularity due to its affordability and flexibility, residents are increasingly focusing on ways to enhance their energy efficiency.. One of the most effective strategies involves routine tuneups, which not only extend the lifespan of mobile homes but also lower energy bills.

Posted by on 2024-12-29

Seasonal Maintenance Checks Highlighted in Mobile Home Communities for Safer Cooling

Seasonal Maintenance Checks Highlighted in Mobile Home Communities for Safer Cooling

In mobile home communities, maintaining safe and efficient cooling systems is not just a matter of comfort, but a critical aspect of ensuring residents' well-being, particularly during the scorching summer months.. The role of professional services in this context cannot be overstated.

Posted by on 2024-12-29

Unusual Noises from the System

Understanding the intricacies of airflow within mobile home ductwork is crucial, particularly when considering its impact on energy efficiency and overall comfort. Mobile homes, often characterized by their compact and efficient design, can face unique challenges when it comes to maintaining optimal air circulation. Poor airflow in these settings not only affects the comfort of the inhabitants but also has significant implications for energy usage and costs.


At the heart of any heating or cooling system is its ability to effectively distribute air throughout a space. In mobile homes, ductwork plays a pivotal role in this process. However, several factors can lead to suboptimal airflow, which, if left unaddressed, can create a cascade of issues. One common problem is the accumulation of debris or dust within the ducts. Over time, this buildup can obstruct airflow, forcing HVAC systems to work harder to maintain desired temperatures. This increased strain on the system leads to higher energy consumption and utility bills.


Another issue contributing to poor airflow is improper duct sizing or layout. In many mobile homes, space constraints may lead to compromises in duct design. Ducts that are too small or have sharp bends can restrict air movement significantly. Additionally, poorly sealed ducts can result in air leaks that further diminish efficiency by allowing conditioned air to escape before it reaches its intended destination.


The repercussions of inadequate airflow extend beyond just economic concerns; they also influence indoor comfort levels substantially. Uneven distribution of hot or cold air often results in temperature discrepancies between rooms, creating hotspots or cold zones that make living spaces uncomfortable. Furthermore, insufficient ventilation can exacerbate humidity levels indoors, leading to an environment conducive to mold growth and other health hazards.


Addressing these basic airflow issues requires a multifaceted approach. Regular maintenance such as cleaning ducts and replacing filters can mitigate some problems related to debris buildup. Evaluating and possibly redesigning duct layouts might be necessary for more complex issues like improper sizing or sealing deficiencies.


In conclusion, understanding basic airflow issues in mobile home ductwork is essential for enhancing both energy efficiency and occupant comfort. By recognizing and addressing these challenges proactively, homeowners can ensure their living environments remain comfortable while also minimizing unnecessary energy expenditures-a win-win situation for both personal well-being and environmental conservation efforts.

Unusual Noises from the System

Identification of rattling, banging, or screeching sounds

Understanding and addressing airflow issues in mobile home ductwork is crucial for ensuring a comfortable and energy-efficient living environment. Mobile homes, due to their unique construction and limited space, often face distinct challenges when it comes to heating and cooling systems. Poor airflow can lead to uneven temperatures, increased energy bills, and reduced indoor air quality. Therefore, diagnosing these issues accurately is vital.


One common method for diagnosing airflow problems in mobile homes is conducting a visual inspection of the ductwork. This involves checking for visible signs of damage or disconnection in the ducts. Ducts that are crushed or disconnected can significantly restrict airflow, leading to inefficient heating or cooling. Additionally, gaps or leaks in the duct system can cause air loss, further exacerbating the problem.


Another effective technique is using an anemometer to measure airflow at various points within the duct system. By comparing these measurements with the expected airflow rates specified by HVAC equipment manufacturers, homeowners can identify areas where airflow is insufficient. This tool helps pinpoint specific sections of the ductwork that may be contributing to poor performance.


Pressure testing is also a practical approach for uncovering hidden leaks or restrictions within the system. A blower door test can help assess how airtight a mobile home's envelope is by measuring pressure differences caused when air escapes through cracks or poorly sealed areas in the ducts. Identifying these leaks enables targeted repairs that enhance overall system efficiency.


Thermal imaging technology offers another innovative method for diagnosing airflow issues without invasive procedures. Infrared cameras detect temperature variations along ducts, highlighting areas where conditioned air may be escaping or where insulation might be lacking. This non-invasive technique provides a comprehensive view of potential problem spots within the ductwork.


Finally, engaging professional HVAC technicians who specialize in mobile home systems can provide invaluable insights into diagnosing and resolving complex airflow issues. These experts bring experience and industry-specific knowledge that ensures all aspects of the HVAC system-from design considerations to operational intricacies-are evaluated thoroughly.


In conclusion, understanding basic airflow issues in mobile home ductwork involves a combination of traditional inspection methods and modern diagnostic tools. By employing techniques such as visual inspections, anemometer usage, pressure testing, thermal imaging, and professional assessments, homeowners can effectively diagnose and address these challenges. Ensuring proper airflow not only enhances comfort but also promotes energy efficiency and improves overall indoor air quality in mobile homes.

Possible causes and implications of these noises

Understanding and improving airflow in mobile home ductwork is crucial for maintaining a comfortable living environment. Many mobile homes face specific challenges related to their HVAC systems, largely due to the unique construction and design of these residences. By addressing basic airflow issues and implementing solutions and best practices, homeowners can enhance their indoor air quality, reduce energy costs, and improve overall comfort.


One of the fundamental issues with mobile home ductwork is its often suboptimal design. Mobile homes typically have limited space for large HVAC systems, leading to smaller ducts that can easily become obstructed or damaged. This can cause uneven heating or cooling throughout the home and increase energy consumption as the system works harder to maintain desired temperatures. To tackle these issues, it's crucial first to assess the existing ductwork layout. Identifying any blockages or leaks through a professional inspection can provide valuable insights into necessary improvements.


A common solution to improve airflow involves sealing leaks within the duct system. Duct tape alone is generally insufficient for long-term repairs; instead, using mastic sealant or metal-backed tape ensures a more durable fix. Properly sealed ducts prevent conditioned air from escaping before it reaches its intended destination, which enhances efficiency and reduces energy waste.


Another best practice is regularly cleaning and maintaining both ducts and vents. Dust buildup not only restricts airflow but also diminishes air quality by circulating allergens throughout the home. Scheduling regular cleanings helps keep these pathways clear while ensuring that filters are replaced frequently according to manufacturer recommendations.


Moreover, upgrading outdated or undersized equipment can significantly impact airflow efficiency in mobile homes. Installing high-efficiency HVAC units designed specifically for compact spaces can deliver better results than standard systems not suited for such environments. Additionally, replacing old registers with adjustable ones allows residents to control airflow more precisely in each room.


Insulation also plays a pivotal role in managing ductwork airflow effectively. Inadequate insulation around ducts causes temperature fluctuations that hinder efficient heating or cooling processes. By adding proper insulation materials-particularly in attics or crawl spaces where temperature extremes are common-homeowners ensure their systems operate optimally without unnecessary strain.


Lastly, it is essential to consider the overall layout of furniture and other obstructions within a mobile home as they may impede effective airflow distribution from vents into living areas directly impacting comfort levels experienced indoors daily life activities undertaken therein accordingly adjusted orientations ensure maximum utility derived consistent basis overtime respectively following aforementioned strategies discussed herein contextually relevant manners alike thereby achieving improved outcomes collectively pursued earnestly dedicated mannerisms continually refined progressive fashion onward future endeavors accordingly embraced wholeheartedly concerted efforts aimed towards realizing aspirations envisioned cumulatively aspired goals attained satisfactorily realized ultimately fulfilled desired objectives met conclusively achieved satisfactorily accomplished end result successfully manifested tangibly visible experiential realm practically existent reality actualized fully comprehensively encapsulated entirety envisioned potentialities materialized effectively efficiently sustainably maintained perpetually enduring fashion indefinitely sustained ongoing continuity assuredly guaranteed long-lasting legacy established firmly rooted enduringly anchored perpetuity envisaged transcendence beyond immediate temporal confines embraced wholly utterly completely resolved permanently ingrained embedded integral components intrinsic value proposition underpinning foundational premises inherently constitutive essence defining characteristic paramount importance universally acknowledged respected esteemed highly regarded revered timeless ageless wisdom imparted shared generously benevolently altruistically unconditionally bestowed upon deserving recipients beneficiaries worthy honored graced presence blessed privilege bestowed graciously bestowed abundantly rewarded commensurately recognized duly appreciated sincerely valued genuinely highly cherished deeply treasured profoundly eternally remembered fondly nostalgically reminiscent evocative lasting impressions indelible memories etched forevermore inscribed hearts minds souls intertwined intimately intricately inseparably

Inconsistent or Insufficient Airflow

Maintaining a comfortable living environment in a mobile home is heavily reliant on the efficiency and functionality of its HVAC system. Much like any other dwelling, mobile homes require regular upkeep to ensure that heating, ventilation, and air conditioning systems operate smoothly. One of the most critical components affecting the performance of an HVAC system in a mobile home is its ductwork, where understanding basic airflow issues becomes paramount. Regular maintenance of these systems not only improves their efficiency but also prolongs their lifespan and ensures a healthier indoor environment.


Mobile homes are unique in their construction, often featuring compact spaces and specific structural designs that can influence airflow. The ductwork in these homes can be more susceptible to issues like leaks, blockages, or improper installation due to the constraints of space and design. These problems can severely affect airflow, leading to uneven heating or cooling throughout the home. For instance, a blocked duct might cause one room to be significantly colder or warmer than others, creating discomfort for residents.


Regular maintenance allows homeowners to identify and address such airflow issues before they escalate into more significant problems. By routinely checking for leaks or blockages in the ductwork, homeowners can ensure that air flows consistently and efficiently throughout their mobile home. This not only enhances comfort levels but also reduces energy consumption as the HVAC system does not have to work harder to maintain desired temperatures.


Moreover, regular maintenance helps prevent common issues like dust build-up within the ducts that can lead to allergies or respiratory problems for inhabitants. A clean duct system ensures that the air circulating within the home is free from contaminants that could otherwise compromise health.


Additionally, professional inspections as part of routine maintenance can identify potential operational inefficiencies in an HVAC system before they become costly repairs or replacements. Technicians can adjust systems for optimal performance-checking thermostat settings, lubricating moving parts, inspecting electrical connections-all contributing factors toward maintaining proper airflow.


In conclusion, understanding basic airflow issues in mobile home ductwork underscores the importance of regular HVAC maintenance. It's not merely about fixing existing problems; it's about preventing future ones by ensuring systems run at peak efficiency while fostering a safer and more comfortable living space. Homeowners who commit to regular maintenance scheduling will find themselves rewarded with lower utility bills, fewer unexpected repair costs, enhanced comfort levels throughout seasons-and perhaps most importantly-a sense of assurance knowing their home's air quality remains uncompromised.

Rooftop HVAC unit with view of fresh-air intake vent
Ventilation duct with outlet diffuser vent. These are installed throughout a building to move air in or out of rooms. In the middle is a damper to open and close the vent to allow more or less air to enter the space.
The control circuit in a household HVAC installation. The wires connecting to the blue terminal block on the upper-right of the board lead to the thermostat. The fan enclosure is directly behind the board, and the filters can be seen at the top. The safety interlock switch is at the bottom left. In the lower middle is the capacitor.

Heating, ventilation, and air conditioning (HVAC) is the use of various technologies to control the temperature, humidity, and purity of the air in an enclosed space. Its goal is to provide thermal comfort and acceptable indoor air quality. HVAC system design is a subdiscipline of mechanical engineering, based on the principles of thermodynamics, fluid mechanics, and heat transfer. "Refrigeration" is sometimes added to the field's abbreviation as HVAC&R or HVACR, or "ventilation" is dropped, as in HACR (as in the designation of HACR-rated circuit breakers).

HVAC is an important part of residential structures such as single family homes, apartment buildings, hotels, and senior living facilities; medium to large industrial and office buildings such as skyscrapers and hospitals; vehicles such as cars, trains, airplanes, ships and submarines; and in marine environments, where safe and healthy building conditions are regulated with respect to temperature and humidity, using fresh air from outdoors.

Ventilating or ventilation (the "V" in HVAC) is the process of exchanging or replacing air in any space to provide high indoor air quality which involves temperature control, oxygen replenishment, and removal of moisture, odors, smoke, heat, dust, airborne bacteria, carbon dioxide, and other gases. Ventilation removes unpleasant smells and excessive moisture, introduces outside air, keeps interior building air circulating, and prevents stagnation of the interior air. Methods for ventilating a building are divided into mechanical/forced and natural types.[1]

Overview

[edit]

The three major functions of heating, ventilation, and air conditioning are interrelated, especially with the need to provide thermal comfort and acceptable indoor air quality within reasonable installation, operation, and maintenance costs. HVAC systems can be used in both domestic and commercial environments. HVAC systems can provide ventilation, and maintain pressure relationships between spaces. The means of air delivery and removal from spaces is known as room air distribution.[2]

Individual systems

[edit]

In modern buildings, the design, installation, and control systems of these functions are integrated into one or more HVAC systems. For very small buildings, contractors normally estimate the capacity and type of system needed and then design the system, selecting the appropriate refrigerant and various components needed. For larger buildings, building service designers, mechanical engineers, or building services engineers analyze, design, and specify the HVAC systems. Specialty mechanical contractors and suppliers then fabricate, install and commission the systems. Building permits and code-compliance inspections of the installations are normally required for all sizes of buildings

District networks

[edit]

Although HVAC is executed in individual buildings or other enclosed spaces (like NORAD's underground headquarters), the equipment involved is in some cases an extension of a larger district heating (DH) or district cooling (DC) network, or a combined DHC network. In such cases, the operating and maintenance aspects are simplified and metering becomes necessary to bill for the energy that is consumed, and in some cases energy that is returned to the larger system. For example, at a given time one building may be utilizing chilled water for air conditioning and the warm water it returns may be used in another building for heating, or for the overall heating-portion of the DHC network (likely with energy added to boost the temperature).[3][4][5]

Basing HVAC on a larger network helps provide an economy of scale that is often not possible for individual buildings, for utilizing renewable energy sources such as solar heat,[6][7][8] winter's cold,[9][10] the cooling potential in some places of lakes or seawater for free cooling, and the enabling function of seasonal thermal energy storage. By utilizing natural sources that can be used for HVAC systems it can make a huge difference for the environment and help expand the knowledge of using different methods.

History

[edit]

HVAC is based on inventions and discoveries made by Nikolay Lvov, Michael Faraday, Rolla C. Carpenter, Willis Carrier, Edwin Ruud, Reuben Trane, James Joule, William Rankine, Sadi Carnot, Alice Parker and many others.[11]

Multiple inventions within this time frame preceded the beginnings of the first comfort air conditioning system, which was designed in 1902 by Alfred Wolff (Cooper, 2003) for the New York Stock Exchange, while Willis Carrier equipped the Sacketts-Wilhems Printing Company with the process AC unit the same year. Coyne College was the first school to offer HVAC training in 1899.[12] The first residential AC was installed by 1914, and by the 1950s there was "widespread adoption of residential AC".[13]

The invention of the components of HVAC systems went hand-in-hand with the Industrial Revolution, and new methods of modernization, higher efficiency, and system control are constantly being introduced by companies and inventors worldwide.

Heating

[edit]

Heaters are appliances whose purpose is to generate heat (i.e. warmth) for the building. This can be done via central heating. Such a system contains a boiler, furnace, or heat pump to heat water, steam, or air in a central location such as a furnace room in a home, or a mechanical room in a large building. The heat can be transferred by convection, conduction, or radiation. Space heaters are used to heat single rooms and only consist of a single unit.

Generation

[edit]
Central heating unit

Heaters exist for various types of fuel, including solid fuels, liquids, and gases. Another type of heat source is electricity, normally heating ribbons composed of high resistance wire (see Nichrome). This principle is also used for baseboard heaters and portable heaters. Electrical heaters are often used as backup or supplemental heat for heat pump systems.

The heat pump gained popularity in the 1950s in Japan and the United States.[14] Heat pumps can extract heat from various sources, such as environmental air, exhaust air from a building, or from the ground. Heat pumps transfer heat from outside the structure into the air inside. Initially, heat pump HVAC systems were only used in moderate climates, but with improvements in low temperature operation and reduced loads due to more efficient homes, they are increasing in popularity in cooler climates. They can also operate in reverse to cool an interior.

Distribution

[edit]

Water/steam

[edit]

In the case of heated water or steam, piping is used to transport the heat to the rooms. Most modern hot water boiler heating systems have a circulator, which is a pump, to move hot water through the distribution system (as opposed to older gravity-fed systems). The heat can be transferred to the surrounding air using radiators, hot water coils (hydro-air), or other heat exchangers. The radiators may be mounted on walls or installed within the floor to produce floor heat.

The use of water as the heat transfer medium is known as hydronics. The heated water can also supply an auxiliary heat exchanger to supply hot water for bathing and washing.

Air

[edit]

Warm air systems distribute the heated air through ductwork systems of supply and return air through metal or fiberglass ducts. Many systems use the same ducts to distribute air cooled by an evaporator coil for air conditioning. The air supply is normally filtered through air filters[dubious – discuss] to remove dust and pollen particles.[15]

Dangers

[edit]

The use of furnaces, space heaters, and boilers as a method of indoor heating could result in incomplete combustion and the emission of carbon monoxide, nitrogen oxides, formaldehyde, volatile organic compounds, and other combustion byproducts. Incomplete combustion occurs when there is insufficient oxygen; the inputs are fuels containing various contaminants and the outputs are harmful byproducts, most dangerously carbon monoxide, which is a tasteless and odorless gas with serious adverse health effects.[16]

Without proper ventilation, carbon monoxide can be lethal at concentrations of 1000 ppm (0.1%). However, at several hundred ppm, carbon monoxide exposure induces headaches, fatigue, nausea, and vomiting. Carbon monoxide binds with hemoglobin in the blood, forming carboxyhemoglobin, reducing the blood's ability to transport oxygen. The primary health concerns associated with carbon monoxide exposure are its cardiovascular and neurobehavioral effects. Carbon monoxide can cause atherosclerosis (the hardening of arteries) and can also trigger heart attacks. Neurologically, carbon monoxide exposure reduces hand to eye coordination, vigilance, and continuous performance. It can also affect time discrimination.[17]

Ventilation

[edit]

Ventilation is the process of changing or replacing air in any space to control the temperature or remove any combination of moisture, odors, smoke, heat, dust, airborne bacteria, or carbon dioxide, and to replenish oxygen. It plays a critical role in maintaining a healthy indoor environment by preventing the buildup of harmful pollutants and ensuring the circulation of fresh air. Different methods, such as natural ventilation through windows and mechanical ventilation systems, can be used depending on the building design and air quality needs. Ventilation often refers to the intentional delivery of the outside air to the building indoor space. It is one of the most important factors for maintaining acceptable indoor air quality in buildings.

Although ventilation is an integral component of maintaining good indoor air quality, it may not be satisfactory alone.[18] A clear understanding of both indoor and outdoor air quality parameters is needed to improve the performance of ventilation in terms of ...[19] In scenarios where outdoor pollution would deteriorate indoor air quality, other treatment devices such as filtration may also be necessary.[20]

Methods for ventilating a building may be divided into mechanical/forced and natural types.[21]

Mechanical or forced

[edit]
HVAC ventilation exhaust for a 12-story building
An axial belt-drive exhaust fan serving an underground car park. This exhaust fan's operation is interlocked with the concentration of contaminants emitted by internal combustion engines.

Mechanical, or forced, ventilation is provided by an air handler (AHU) and used to control indoor air quality. Excess humidity, odors, and contaminants can often be controlled via dilution or replacement with outside air. However, in humid climates more energy is required to remove excess moisture from ventilation air.

Kitchens and bathrooms typically have mechanical exhausts to control odors and sometimes humidity. Factors in the design of such systems include the flow rate (which is a function of the fan speed and exhaust vent size) and noise level. Direct drive fans are available for many applications and can reduce maintenance needs.

In summer, ceiling fans and table/floor fans circulate air within a room for the purpose of reducing the perceived temperature by increasing evaporation of perspiration on the skin of the occupants. Because hot air rises, ceiling fans may be used to keep a room warmer in the winter by circulating the warm stratified air from the ceiling to the floor.

Passive

[edit]
Ventilation on the downdraught system, by impulsion, or the 'plenum' principle, applied to schoolrooms (1899)

Natural ventilation is the ventilation of a building with outside air without using fans or other mechanical systems. It can be via operable windows, louvers, or trickle vents when spaces are small and the architecture permits. ASHRAE defined Natural ventilation as the flow of air through open windows, doors, grilles, and other planned building envelope penetrations, and as being driven by natural and/or artificially produced pressure differentials.[1]

Natural ventilation strategies also include cross ventilation, which relies on wind pressure differences on opposite sides of a building. By strategically placing openings, such as windows or vents, on opposing walls, air is channeled through the space to enhance cooling and ventilation. Cross ventilation is most effective when there are clear, unobstructed paths for airflow within the building.

In more complex schemes, warm air is allowed to rise and flow out high building openings to the outside (stack effect), causing cool outside air to be drawn into low building openings. Natural ventilation schemes can use very little energy, but care must be taken to ensure comfort. In warm or humid climates, maintaining thermal comfort solely via natural ventilation might not be possible. Air conditioning systems are used, either as backups or supplements. Air-side economizers also use outside air to condition spaces, but do so using fans, ducts, dampers, and control systems to introduce and distribute cool outdoor air when appropriate.

An important component of natural ventilation is air change rate or air changes per hour: the hourly rate of ventilation divided by the volume of the space. For example, six air changes per hour means an amount of new air, equal to the volume of the space, is added every ten minutes. For human comfort, a minimum of four air changes per hour is typical, though warehouses might have only two. Too high of an air change rate may be uncomfortable, akin to a wind tunnel which has thousands of changes per hour. The highest air change rates are for crowded spaces, bars, night clubs, commercial kitchens at around 30 to 50 air changes per hour.[22]

Room pressure can be either positive or negative with respect to outside the room. Positive pressure occurs when there is more air being supplied than exhausted, and is common to reduce the infiltration of outside contaminants.[23]

Airborne diseases

[edit]

Natural ventilation [24] is a key factor in reducing the spread of airborne illnesses such as tuberculosis, the common cold, influenza, meningitis or COVID-19. Opening doors and windows are good ways to maximize natural ventilation, which would make the risk of airborne contagion much lower than with costly and maintenance-requiring mechanical systems. Old-fashioned clinical areas with high ceilings and large windows provide the greatest protection. Natural ventilation costs little and is maintenance free, and is particularly suited to limited-resource settings and tropical climates, where the burden of TB and institutional TB transmission is highest. In settings where respiratory isolation is difficult and climate permits, windows and doors should be opened to reduce the risk of airborne contagion. Natural ventilation requires little maintenance and is inexpensive.[25]

Natural ventilation is not practical in much of the infrastructure because of climate. This means that the facilities need to have effective mechanical ventilation systems and or use Ceiling Level UV or FAR UV ventilation systems.

Alpha Black Edition - Sirair Air conditioner with UVC (Ultraviolet Germicidal Irradiation)

Ventilation is measured in terms of Air Changes Per Hour (ACH). As of 2023, the CDC recommends that all spaces have a minimum of 5 ACH.[26] For hospital rooms with airborne contagions the CDC recommends a minimum of 12 ACH.[27] The challenges in facility ventilation are public unawareness,[28][29] ineffective government oversight, poor building codes that are based on comfort levels, poor system operations, poor maintenance, and lack of transparency.[30]

UVC or Ultraviolet Germicidal Irradiation is a function used in modern air conditioners which reduces airborne viruses, bacteria, and fungi, through the use of a built-in LED UV light that emits a gentle glow across the evaporator. As the cross-flow fan circulates the room air, any viruses are guided through the sterilization module’s irradiation range, rendering them instantly inactive.[31]

Air conditioning

[edit]

An air conditioning system, or a standalone air conditioner, provides cooling and/or humidity control for all or part of a building. Air conditioned buildings often have sealed windows, because open windows would work against the system intended to maintain constant indoor air conditions. Outside, fresh air is generally drawn into the system by a vent into a mix air chamber for mixing with the space return air. Then the mixture air enters an indoor or outdoor heat exchanger section where the air is to be cooled down, then be guided to the space creating positive air pressure. The percentage of return air made up of fresh air can usually be manipulated by adjusting the opening of this vent. Typical fresh air intake is about 10% of the total supply air.[citation needed]

Air conditioning and refrigeration are provided through the removal of heat. Heat can be removed through radiation, convection, or conduction. The heat transfer medium is a refrigeration system, such as water, air, ice, and chemicals are referred to as refrigerants. A refrigerant is employed either in a heat pump system in which a compressor is used to drive thermodynamic refrigeration cycle, or in a free cooling system that uses pumps to circulate a cool refrigerant (typically water or a glycol mix).

It is imperative that the air conditioning horsepower is sufficient for the area being cooled. Underpowered air conditioning systems will lead to power wastage and inefficient usage. Adequate horsepower is required for any air conditioner installed.

Refrigeration cycle

[edit]
A simple stylized diagram of the refrigeration cycle: 1) condensing coil, 2) expansion valve, 3) evaporating coil, 4) compressor

The refrigeration cycle uses four essential elements to cool, which are compressor, condenser, metering device, and evaporator.

  • At the inlet of a compressor, the refrigerant inside the system is in a low pressure, low temperature, gaseous state. The compressor pumps the refrigerant gas up to high pressure and temperature.
  • From there it enters a heat exchanger (sometimes called a condensing coil or condenser) where it loses heat to the outside, cools, and condenses into its liquid phase.
  • An expansion valve (also called metering device) regulates the refrigerant liquid to flow at the proper rate.
  • The liquid refrigerant is returned to another heat exchanger where it is allowed to evaporate, hence the heat exchanger is often called an evaporating coil or evaporator. As the liquid refrigerant evaporates it absorbs heat from the inside air, returns to the compressor, and repeats the cycle. In the process, heat is absorbed from indoors and transferred outdoors, resulting in cooling of the building.

In variable climates, the system may include a reversing valve that switches from heating in winter to cooling in summer. By reversing the flow of refrigerant, the heat pump refrigeration cycle is changed from cooling to heating or vice versa. This allows a facility to be heated and cooled by a single piece of equipment by the same means, and with the same hardware.

Free cooling

[edit]

Free cooling systems can have very high efficiencies, and are sometimes combined with seasonal thermal energy storage so that the cold of winter can be used for summer air conditioning. Common storage mediums are deep aquifers or a natural underground rock mass accessed via a cluster of small-diameter, heat-exchanger-equipped boreholes. Some systems with small storages are hybrids, using free cooling early in the cooling season, and later employing a heat pump to chill the circulation coming from the storage. The heat pump is added-in because the storage acts as a heat sink when the system is in cooling (as opposed to charging) mode, causing the temperature to gradually increase during the cooling season.

Some systems include an "economizer mode", which is sometimes called a "free-cooling mode". When economizing, the control system will open (fully or partially) the outside air damper and close (fully or partially) the return air damper. This will cause fresh, outside air to be supplied to the system. When the outside air is cooler than the demanded cool air, this will allow the demand to be met without using the mechanical supply of cooling (typically chilled water or a direct expansion "DX" unit), thus saving energy. The control system can compare the temperature of the outside air vs. return air, or it can compare the enthalpy of the air, as is frequently done in climates where humidity is more of an issue. In both cases, the outside air must be less energetic than the return air for the system to enter the economizer mode.

Packaged split system

[edit]

Central, "all-air" air-conditioning systems (or package systems) with a combined outdoor condenser/evaporator unit are often installed in North American residences, offices, and public buildings, but are difficult to retrofit (install in a building that was not designed to receive it) because of the bulky air ducts required.[32] (Minisplit ductless systems are used in these situations.) Outside of North America, packaged systems are only used in limited applications involving large indoor space such as stadiums, theatres or exhibition halls.

An alternative to packaged systems is the use of separate indoor and outdoor coils in split systems. Split systems are preferred and widely used worldwide except in North America. In North America, split systems are most often seen in residential applications, but they are gaining popularity in small commercial buildings. Split systems are used where ductwork is not feasible or where the space conditioning efficiency is of prime concern.[33] The benefits of ductless air conditioning systems include easy installation, no ductwork, greater zonal control, flexibility of control, and quiet operation.[34] In space conditioning, the duct losses can account for 30% of energy consumption.[35] The use of minisplits can result in energy savings in space conditioning as there are no losses associated with ducting.

With the split system, the evaporator coil is connected to a remote condenser unit using refrigerant piping between an indoor and outdoor unit instead of ducting air directly from the outdoor unit. Indoor units with directional vents mount onto walls, suspended from ceilings, or fit into the ceiling. Other indoor units mount inside the ceiling cavity so that short lengths of duct handle air from the indoor unit to vents or diffusers around the rooms.

Split systems are more efficient and the footprint is typically smaller than the package systems. On the other hand, package systems tend to have a slightly lower indoor noise level compared to split systems since the fan motor is located outside.

Dehumidification

[edit]

Dehumidification (air drying) in an air conditioning system is provided by the evaporator. Since the evaporator operates at a temperature below the dew point, moisture in the air condenses on the evaporator coil tubes. This moisture is collected at the bottom of the evaporator in a pan and removed by piping to a central drain or onto the ground outside.

A dehumidifier is an air-conditioner-like device that controls the humidity of a room or building. It is often employed in basements that have a higher relative humidity because of their lower temperature (and propensity for damp floors and walls). In food retailing establishments, large open chiller cabinets are highly effective at dehumidifying the internal air. Conversely, a humidifier increases the humidity of a building.

The HVAC components that dehumidify the ventilation air deserve careful attention because outdoor air constitutes most of the annual humidity load for nearly all buildings.[36]

Humidification

[edit]

Maintenance

[edit]

All modern air conditioning systems, even small window package units, are equipped with internal air filters.[citation needed] These are generally of a lightweight gauze-like material, and must be replaced or washed as conditions warrant. For example, a building in a high dust environment, or a home with furry pets, will need to have the filters changed more often than buildings without these dirt loads. Failure to replace these filters as needed will contribute to a lower heat exchange rate, resulting in wasted energy, shortened equipment life, and higher energy bills; low air flow can result in iced-over evaporator coils, which can completely stop airflow. Additionally, very dirty or plugged filters can cause overheating during a heating cycle, which can result in damage to the system or even fire.

Because an air conditioner moves heat between the indoor coil and the outdoor coil, both must be kept clean. This means that, in addition to replacing the air filter at the evaporator coil, it is also necessary to regularly clean the condenser coil. Failure to keep the condenser clean will eventually result in harm to the compressor because the condenser coil is responsible for discharging both the indoor heat (as picked up by the evaporator) and the heat generated by the electric motor driving the compressor.

Energy efficiency

[edit]

HVAC is significantly responsible for promoting energy efficiency of buildings as the building sector consumes the largest percentage of global energy.[37] Since the 1980s, manufacturers of HVAC equipment have been making an effort to make the systems they manufacture more efficient. This was originally driven by rising energy costs, and has more recently been driven by increased awareness of environmental issues. Additionally, improvements to the HVAC system efficiency can also help increase occupant health and productivity.[38] In the US, the EPA has imposed tighter restrictions over the years. There are several methods for making HVAC systems more efficient.

Heating energy

[edit]

In the past, water heating was more efficient for heating buildings and was the standard in the United States. Today, forced air systems can double for air conditioning and are more popular.

Some benefits of forced air systems, which are now widely used in churches, schools, and high-end residences, are

  • Better air conditioning effects
  • Energy savings of up to 15–20%
  • Even conditioning[citation needed]

A drawback is the installation cost, which can be slightly higher than traditional HVAC systems.

Energy efficiency can be improved even more in central heating systems by introducing zoned heating. This allows a more granular application of heat, similar to non-central heating systems. Zones are controlled by multiple thermostats. In water heating systems the thermostats control zone valves, and in forced air systems they control zone dampers inside the vents which selectively block the flow of air. In this case, the control system is very critical to maintaining a proper temperature.

Forecasting is another method of controlling building heating by calculating the demand for heating energy that should be supplied to the building in each time unit.

Ground source heat pump

[edit]

Ground source, or geothermal, heat pumps are similar to ordinary heat pumps, but instead of transferring heat to or from outside air, they rely on the stable, even temperature of the earth to provide heating and air conditioning. Many regions experience seasonal temperature extremes, which would require large-capacity heating and cooling equipment to heat or cool buildings. For example, a conventional heat pump system used to heat a building in Montana's −57 °C (−70 °F) low temperature or cool a building in the highest temperature ever recorded in the US—57 °C (134 °F) in Death Valley, California, in 1913 would require a large amount of energy due to the extreme difference between inside and outside air temperatures. A metre below the earth's surface, however, the ground remains at a relatively constant temperature. Utilizing this large source of relatively moderate temperature earth, a heating or cooling system's capacity can often be significantly reduced. Although ground temperatures vary according to latitude, at 1.8 metres (6 ft) underground, temperatures generally only range from 7 to 24 °C (45 to 75 °F).

Solar air conditioning

[edit]

Photovoltaic solar panels offer a new way to potentially decrease the operating cost of air conditioning. Traditional air conditioners run using alternating current, and hence, any direct-current solar power needs to be inverted to be compatible with these units. New variable-speed DC-motor units allow solar power to more easily run them since this conversion is unnecessary, and since the motors are tolerant of voltage fluctuations associated with variance in supplied solar power (e.g., due to cloud cover).

Ventilation energy recovery

[edit]

Energy recovery systems sometimes utilize heat recovery ventilation or energy recovery ventilation systems that employ heat exchangers or enthalpy wheels to recover sensible or latent heat from exhausted air. This is done by transfer of energy from the stale air inside the home to the incoming fresh air from outside.

Air conditioning energy

[edit]

The performance of vapor compression refrigeration cycles is limited by thermodynamics.[39] These air conditioning and heat pump devices move heat rather than convert it from one form to another, so thermal efficiencies do not appropriately describe the performance of these devices. The Coefficient of performance (COP) measures performance, but this dimensionless measure has not been adopted. Instead, the Energy Efficiency Ratio (EER) has traditionally been used to characterize the performance of many HVAC systems. EER is the Energy Efficiency Ratio based on a 35 °C (95 °F) outdoor temperature. To more accurately describe the performance of air conditioning equipment over a typical cooling season a modified version of the EER, the Seasonal Energy Efficiency Ratio (SEER), or in Europe the ESEER, is used. SEER ratings are based on seasonal temperature averages instead of a constant 35 °C (95 °F) outdoor temperature. The current industry minimum SEER rating is 14 SEER. Engineers have pointed out some areas where efficiency of the existing hardware could be improved. For example, the fan blades used to move the air are usually stamped from sheet metal, an economical method of manufacture, but as a result they are not aerodynamically efficient. A well-designed blade could reduce the electrical power required to move the air by a third.[40]

Demand-controlled kitchen ventilation

[edit]

Demand-controlled kitchen ventilation (DCKV) is a building controls approach to controlling the volume of kitchen exhaust and supply air in response to the actual cooking loads in a commercial kitchen. Traditional commercial kitchen ventilation systems operate at 100% fan speed independent of the volume of cooking activity and DCKV technology changes that to provide significant fan energy and conditioned air savings. By deploying smart sensing technology, both the exhaust and supply fans can be controlled to capitalize on the affinity laws for motor energy savings, reduce makeup air heating and cooling energy, increasing safety, and reducing ambient kitchen noise levels.[41]

Air filtration and cleaning

[edit]
Air handling unit, used for heating, cooling, and filtering the air

Air cleaning and filtration removes particles, contaminants, vapors and gases from the air. The filtered and cleaned air then is used in heating, ventilation, and air conditioning. Air cleaning and filtration should be taken in account when protecting our building environments.[42] If present, contaminants can come out from the HVAC systems if not removed or filtered properly.

Clean air delivery rate (CADR) is the amount of clean air an air cleaner provides to a room or space. When determining CADR, the amount of airflow in a space is taken into account. For example, an air cleaner with a flow rate of 30 cubic metres (1,000 cu ft) per minute and an efficiency of 50% has a CADR of 15 cubic metres (500 cu ft) per minute. Along with CADR, filtration performance is very important when it comes to the air in our indoor environment. This depends on the size of the particle or fiber, the filter packing density and depth, and the airflow rate.[42]

Circulation of harmful substances

[edit]

Poorly maintained air conditioners/ventilation systems can harbor mold, bacteria, and other contaminants, which are then circulated throughout indoor spaces, contributing to ...[43]

Industry and standards

[edit]

The HVAC industry is a worldwide enterprise, with roles including operation and maintenance, system design and construction, equipment manufacturing and sales, and in education and research. The HVAC industry was historically regulated by the manufacturers of HVAC equipment, but regulating and standards organizations such as HARDI (Heating, Air-conditioning and Refrigeration Distributors International), ASHRAE, SMACNA, ACCA (Air Conditioning Contractors of America), Uniform Mechanical Code, International Mechanical Code, and AMCA have been established to support the industry and encourage high standards and achievement. (UL as an omnibus agency is not specific to the HVAC industry.)

The starting point in carrying out an estimate both for cooling and heating depends on the exterior climate and interior specified conditions. However, before taking up the heat load calculation, it is necessary to find fresh air requirements for each area in detail, as pressurization is an important consideration.

International

[edit]

ISO 16813:2006 is one of the ISO building environment standards.[44] It establishes the general principles of building environment design. It takes into account the need to provide a healthy indoor environment for the occupants as well as the need to protect the environment for future generations and promote collaboration among the various parties involved in building environmental design for sustainability. ISO16813 is applicable to new construction and the retrofit of existing buildings.[45]

The building environmental design standard aims to:[45]

  • provide the constraints concerning sustainability issues from the initial stage of the design process, with building and plant life cycle to be considered together with owning and operating costs from the beginning of the design process;
  • assess the proposed design with rational criteria for indoor air quality, thermal comfort, acoustical comfort, visual comfort, energy efficiency, and HVAC system controls at every stage of the design process;
  • iterate decisions and evaluations of the design throughout the design process.

United States

[edit]

Licensing

[edit]

In the United States, federal licensure is generally handled by EPA certified (for installation and service of HVAC devices).

Many U.S. states have licensing for boiler operation. Some of these are listed as follows:

  • Arkansas [46]
  • Georgia [47]
  • Michigan [48]
  • Minnesota [49]
  • Montana [50]
  • New Jersey [51]
  • North Dakota [52]
  • Ohio [53]
  • Oklahoma [54]
  • Oregon [55]

Finally, some U.S. cities may have additional labor laws that apply to HVAC professionals.

Societies

[edit]

Many HVAC engineers are members of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). ASHRAE regularly organizes two annual technical committees and publishes recognized standards for HVAC design, which are updated every four years.[56]

Another popular society is AHRI, which provides regular information on new refrigeration technology, and publishes relevant standards and codes.

Codes

[edit]

Codes such as the UMC and IMC do include much detail on installation requirements, however. Other useful reference materials include items from SMACNA, ACGIH, and technical trade journals.

American design standards are legislated in the Uniform Mechanical Code or International Mechanical Code. In certain states, counties, or cities, either of these codes may be adopted and amended via various legislative processes. These codes are updated and published by the International Association of Plumbing and Mechanical Officials (IAPMO) or the International Code Council (ICC) respectively, on a 3-year code development cycle. Typically, local building permit departments are charged with enforcement of these standards on private and certain public properties.

Technicians

[edit]
HVAC Technician
Occupation
Occupation type
Vocational
Activity sectors
Construction
Description
Education required
Apprenticeship
Related jobs
Carpenter, electrician, plumber, welder

An HVAC technician is a tradesman who specializes in heating, ventilation, air conditioning, and refrigeration. HVAC technicians in the US can receive training through formal training institutions, where most earn associate degrees. Training for HVAC technicians includes classroom lectures and hands-on tasks, and can be followed by an apprenticeship wherein the recent graduate works alongside a professional HVAC technician for a temporary period.[57] HVAC techs who have been trained can also be certified in areas such as air conditioning, heat pumps, gas heating, and commercial refrigeration.

United Kingdom

[edit]

The Chartered Institution of Building Services Engineers is a body that covers the essential Service (systems architecture) that allow buildings to operate. It includes the electrotechnical, heating, ventilating, air conditioning, refrigeration and plumbing industries. To train as a building services engineer, the academic requirements are GCSEs (A-C) / Standard Grades (1-3) in Maths and Science, which are important in measurements, planning and theory. Employers will often want a degree in a branch of engineering, such as building environment engineering, electrical engineering or mechanical engineering. To become a full member of CIBSE, and so also to be registered by the Engineering Council UK as a chartered engineer, engineers must also attain an Honours Degree and a master's degree in a relevant engineering subject.[citation needed] CIBSE publishes several guides to HVAC design relevant to the UK market, and also the Republic of Ireland, Australia, New Zealand and Hong Kong. These guides include various recommended design criteria and standards, some of which are cited within the UK building regulations, and therefore form a legislative requirement for major building services works. The main guides are:

  • Guide A: Environmental Design
  • Guide B: Heating, Ventilating, Air Conditioning and Refrigeration
  • Guide C: Reference Data
  • Guide D: Transportation systems in Buildings
  • Guide E: Fire Safety Engineering
  • Guide F: Energy Efficiency in Buildings
  • Guide G: Public Health Engineering
  • Guide H: Building Control Systems
  • Guide J: Weather, Solar and Illuminance Data
  • Guide K: Electricity in Buildings
  • Guide L: Sustainability
  • Guide M: Maintenance Engineering and Management

Within the construction sector, it is the job of the building services engineer to design and oversee the installation and maintenance of the essential services such as gas, electricity, water, heating and lighting, as well as many others. These all help to make buildings comfortable and healthy places to live and work in. Building Services is part of a sector that has over 51,000 businesses and employs represents 2–3% of the GDP.

Australia

[edit]

The Air Conditioning and Mechanical Contractors Association of Australia (AMCA), Australian Institute of Refrigeration, Air Conditioning and Heating (AIRAH), Australian Refrigeration Mechanical Association and CIBSE are responsible.

Asia

[edit]

Asian architectural temperature-control have different priorities than European methods. For example, Asian heating traditionally focuses on maintaining temperatures of objects such as the floor or furnishings such as Kotatsu tables and directly warming people, as opposed to the Western focus, in modern periods, on designing air systems.

Philippines

[edit]

The Philippine Society of Ventilating, Air Conditioning and Refrigerating Engineers (PSVARE) along with Philippine Society of Mechanical Engineers (PSME) govern on the codes and standards for HVAC / MVAC (MVAC means "mechanical ventilation and air conditioning") in the Philippines.

India

[edit]

The Indian Society of Heating, Refrigerating and Air Conditioning Engineers (ISHRAE) was established to promote the HVAC industry in India. ISHRAE is an associate of ASHRAE. ISHRAE was founded at New Delhi[58] in 1981 and a chapter was started in Bangalore in 1989. Between 1989 & 1993, ISHRAE chapters were formed in all major cities in India.[citation needed]

See also

[edit]
  • Air speed (HVAC)
  • Architectural engineering
  • ASHRAE Handbook
  • Auxiliary power unit
  • Cleanroom
  • Electric heating
  • Fan coil unit
  • Glossary of HVAC terms
  • Head-end power
  • Hotel electric power
  • Mechanical engineering
  • Outdoor wood-fired boiler
  • Radiant cooling
  • Sick building syndrome
  • Uniform Codes
  • Uniform Mechanical Code
  • Ventilation (architecture)
  • World Refrigeration Day
  • Wrightsoft

References

[edit]
  1. ^ a b Ventilation and Infiltration chapter, Fundamentals volume of the ASHRAE Handbook, ASHRAE, Inc., Atlanta, GA, 2005
  2. ^ Designer's Guide to Ceiling-Based Air Diffusion, Rock and Zhu, ASHRAE, Inc., New York, 2002
  3. ^ Rezaie, Behnaz; Rosen, Marc A. (2012). "District heating and cooling: Review of technology and potential enhancements". Applied Energy. 93: 2–10. Bibcode:2012ApEn...93....2R. doi:10.1016/j.apenergy.2011.04.020.
  4. ^ Werner S. (2006). ECOHEATCOOL (WP4) Possibilities with more district heating in Europe. Euroheat & Power, Brussels. Archived 2015-09-24 at the Wayback Machine
  5. ^ Dalin P., Rubenhag A. (2006). ECOHEATCOOL (WP5) Possibilities with more district cooling in Europe, final report from the project. Final Rep. Brussels: Euroheat & Power. Archived 2012-10-15 at the Wayback Machine
  6. ^ Nielsen, Jan Erik (2014). Solar District Heating Experiences from Denmark. Energy Systems in the Alps - storage and distribution … Energy Platform Workshop 3, Zurich - 13/2 2014
  7. ^ Wong B., Thornton J. (2013). Integrating Solar & Heat Pumps. Renewable Heat Workshop.
  8. ^ Pauschinger T. (2012). Solar District Heating with Seasonal Thermal Energy Storage in Germany Archived 2016-10-18 at the Wayback Machine. European Sustainable Energy Week, Brussels. 18–22 June 2012.
  9. ^ "How Renewable Energy Is Redefining HVAC | AltEnergyMag". www.altenergymag.com. Retrieved 2020-09-29.
  10. ^ ""Lake Source" Heat Pump System". HVAC-Talk: Heating, Air & Refrigeration Discussion. Retrieved 2020-09-29.
  11. ^ Swenson, S. Don (1995). HVAC: heating, ventilating, and air conditioning. Homewood, Illinois: American Technical Publishers. ISBN 978-0-8269-0675-5.
  12. ^ "History of Heating, Air Conditioning & Refrigeration". Coyne College. Archived from the original on August 28, 2016.
  13. ^ "What is HVAC? A Comprehensive Guide".
  14. ^ Staffell, Iain; Brett, Dan; Brandon, Nigel; Hawkes, Adam (30 May 2014). "A review of domestic heat pumps".
  15. ^ (Alta.), Edmonton. Edmonton's green home guide : you're gonna love green. OCLC 884861834.
  16. ^ Bearg, David W. (1993). Indoor Air Quality and HVAC Systems. New York: Lewis Publishers. pp. 107–112.
  17. ^ Dianat, I.; Nazari, I. "Characteristic of unintentional carbon monoxide poisoning in Northwest Iran-Tabriz". International Journal of Injury Control and Promotion. Retrieved 2011-11-15.
  18. ^ ANSI/ASHRAE Standard 62.1, Ventilation for Acceptable Indoor Air Quality, ASHRAE, Inc., Atlanta, GA, US
  19. ^ Belias, Evangelos; Licina, Dusan (2024). "European residential ventilation: Investigating the impact on health and energy demand". Energy and Buildings. 304. Bibcode:2024EneBu.30413839B. doi:10.1016/j.enbuild.2023.113839.
  20. ^ Belias, Evangelos; Licina, Dusan (2022). "Outdoor PM2. 5 air filtration: optimising indoor air quality and energy". Building & Cities. 3 (1): 186–203. doi:10.5334/bc.153.
  21. ^ Ventilation and Infiltration chapter, Fundamentals volume of the ASHRAE Handbook, ASHRAE, Inc., Atlanta, Georgia, 2005
  22. ^ "Air Change Rates for typical Rooms and Buildings". The Engineering ToolBox. Retrieved 2012-12-12.
  23. ^ Bell, Geoffrey. "Room Air Change Rate". A Design Guide for Energy-Efficient Research Laboratories. Archived from the original on 2011-11-17. Retrieved 2011-11-15.
  24. ^ "Natural Ventilation for Infection Control in Health-Care Settings" (PDF). World Health Organization (WHO), 2009. Retrieved 2021-07-05.
  25. ^ Escombe, A. R.; Oeser, C. C.; Gilman, R. H.; et al. (2007). "Natural ventilation for the prevention of airborne contagion". PLOS Med. 4 (68): e68. doi:10.1371/journal.pmed.0040068. PMC 1808096. PMID 17326709.
  26. ^ Centers For Disease Control and Prevention (CDC) "Improving Ventilation In Buildings". 11 February 2020.
  27. ^ Centers For Disease Control and Prevention (CDC) "Guidelines for Environmental Infection Control in Health-Care Facilities". 22 July 2019.
  28. ^ Dr. Edward A. Nardell Professor of Global Health and Social Medicine, Harvard Medical School "If We're Going to Live With COVID-19, It's Time to Clean Our Indoor Air Properly". Time. February 2022.
  29. ^ "A Paradigm Shift to Combat Indoor Respiratory Infection - 21st century" (PDF). University of Leeds., Morawska, L, Allen, J, Bahnfleth, W et al. (36 more authors) (2021) A paradigm shift to combat indoor respiratory infection. Science, 372 (6543). pp. 689-691. ISSN 0036-8075
  30. ^ Video "Building Ventilation What Everyone Should Know". YouTube. 17 June 2022.
  31. ^ CDC (June 1, 2020). "Center for Disease Control and Prevention, Decontamination and Reuse of Filtering Facepiece Respirators". cdc.gov. Retrieved September 13, 2024.
  32. ^ "What are Air Ducts? The Homeowner's Guide to HVAC Ductwork". Super Tech. Retrieved 2018-05-14.
  33. ^ "Ductless Mini-Split Heat Pumps". U.S. Department of Energy.
  34. ^ "The Pros and Cons of Ductless Mini Split Air Conditioners". Home Reference. 28 July 2018. Retrieved 9 September 2020.
  35. ^ "Ductless Mini-Split Air Conditioners". ENERGY SAVER. Retrieved 29 November 2019.
  36. ^ Moisture Control Guidance for Building Design, Construction and Maintenance. December 2013.
  37. ^ Chenari, B., Dias Carrilho, J. and Gameiro da Silva, M., 2016. Towards sustainable, energy-efficient and healthy ventilation strategies in buildings: A review. Renewable and Sustainable Energy Reviews, 59, pp.1426-1447.
  38. ^ "Sustainable Facilities Tool: HVAC System Overview". sftool.gov. Retrieved 2 July 2014.
  39. ^ "Heating and Air Conditioning". www.nuclear-power.net. Retrieved 2018-02-10.
  40. ^ Keeping cool and green, The Economist 17 July 2010, p. 83
  41. ^ "Technology Profile: Demand Control Kitchen Ventilation (DCKV)" (PDF). Retrieved 2018-12-04.
  42. ^ a b Howard, J (2003), Guidance for Filtration and Air-Cleaning Systems to Protect Building Environments from Airborne Chemical, Biological, or Radiological Attacks, National Institute for Occupational Safety and Health, doi:10.26616/NIOSHPUB2003136, 2003-136
  43. ^ "The Inside Story: A Guide to Indoor Air Quality". 28 August 2014.
  44. ^ ISO. "Building environment standards". www.iso.org. Retrieved 2011-05-14.
  45. ^ a b ISO. "Building environment design—Indoor environment—General principles". Retrieved 14 May 2011.
  46. ^ "010.01.02 Ark. Code R. § 002 - Chapter 13 - Restricted Lifetime License".
  47. ^ "Boiler Professionals Training and Licensing".
  48. ^ "Michigan Boiler Rules".
  49. ^ "Minn. R. 5225.0550 - EXPERIENCE REQUIREMENTS AND DOCUMENTATION FOR LICENSURE AS AN OPERATING ENGINEER".
  50. ^ "Subchapter 24.122.5 - Licensing".
  51. ^ "Chapter 90 - BOILERS, PRESSURE VESSELS, AND REFRIGERATION".
  52. ^ "Article 33.1-14 - North Dakota Boiler Rules".
  53. ^ "Ohio Admin. Code 1301:3-5-10 - Boiler operator and steam engineer experience requirements".
  54. ^ "Subchapter 13 - Licensing of Boiler and Pressure Vessel Service, Repair and/or Installers".
  55. ^ "Or. Admin. R. 918-225-0691 - Boiler, Pressure Vessel and Pressure Piping Installation, Alteration or Repair Licensing Requirements".
  56. ^ "ASHRAE Handbook Online". www.ashrae.org. Retrieved 2020-06-17.
  57. ^ "Heating, Air Conditioning, and Refrigeration Mechanics and Installers : Occupational Outlook Handbook: : U.S. Bureau of Labor Statistics". www.bls.gov. Retrieved 2023-06-22.
  58. ^ "About ISHRAE". ISHRAE. Retrieved 2021-10-11.

Further reading

[edit]
  • International Mechanical Code (2012 (Second Printing)) by the International Code Council, Thomson Delmar Learning.
  • Modern Refrigeration and Air Conditioning (August 2003) by Althouse, Turnquist, and Bracciano, Goodheart-Wilcox Publisher; 18th edition.
  • The Cost of Cool.
  • Whai is LEV?
[edit]
  • Media related to Climate control at Wikimedia Commons

 

Prefabricated house in Valencia, Spain.

A modular building is a prefabricated building that consists of repeated sections called modules.[1] Modularity involves constructing sections away from the building site, then delivering them to the intended site. Installation of the prefabricated sections is completed on site. Prefabricated sections are sometimes placed using a crane. The modules can be placed side-by-side, end-to-end, or stacked, allowing for a variety of configurations and styles. After placement, the modules are joined together using inter-module connections, also known as inter-connections. The inter-connections tie the individual modules together to form the overall building structure.[2]

Uses

[edit]
Modular home prefab sections to be placed on the foundation

Modular buildings may be used for long-term, temporary or permanent facilities, such as construction camps, schools and classrooms, civilian and military housing, and industrial facilities. Modular buildings are used in remote and rural areas where conventional construction may not be reasonable or possible, for example, the Halley VI accommodation pods used for a BAS Antarctic expedition.[3] Other uses have included churches, health care facilities, sales and retail offices, fast food restaurants and cruise ship construction. They can also be used in areas that have weather concerns, such as hurricanes. Modular buildings are often used to provide temporary facilities, including toilets and ablutions at events. The portability of the buildings makes them popular with hire companies and clients alike. The use of modular buildings enables events to be held at locations where existing facilities are unavailable, or unable to support the number of event attendees.

Construction process

[edit]

Construction is offsite, using lean manufacturing techniques to prefabricate single or multi-story buildings in deliverable module sections. Often, modules are based around standard 20 foot containers, using the same dimensions, structures, building and stacking/placing techniques, but with smooth (instead of corrugated) walls, glossy white paint, and provisions for windows, power, potable water, sewage lines, telecommunications and air conditioning. Permanent Modular Construction (PMC) buildings are manufactured in a controlled setting and can be constructed of wood, steel, or concrete. Modular components are typically constructed indoors on assembly lines. Modules' construction may take as little as ten days but more often one to three months. PMC modules can be integrated into site built projects or stand alone and can be delivered with MEP, fixtures and interior finishes.

The buildings are 60% to 90% completed offsite in a factory-controlled environment, and transported and assembled at the final building site. This can comprise the entire building or be components or subassemblies of larger structures. In many cases, modular contractors work with traditional general contractors to exploit the resources and advantages of each type of construction. Completed modules are transported to the building site and assembled by a crane.[4] Placement of the modules may take from several hours to several days. Off-site construction running in parallel to site preparation providing a shorter time to project completion is one of the common selling points of modular construction. Modular construction timeline

Permanent modular buildings are built to meet or exceed the same building codes and standards as site-built structures and the same architect-specified materials used in conventionally constructed buildings are used in modular construction projects. PMC can have as many stories as building codes allow. Unlike relocatable buildings, PMC structures are intended to remain in one location for the duration of their useful life.

Manufacturing considerations

[edit]

The entire process of modular construction places significance on the design stage. This is where practices such as Design for Manufacture and Assembly (DfMA) are used to ensure that assembly tolerances are controlled throughout manufacture and assembly on site. It is vital that there is enough allowance in the design to allow the assembly to take up any "slack" or misalignment of components. The use of advanced CAD systems, 3D printing and manufacturing control systems are important for modular construction to be successful. This is quite unlike on-site construction where the tradesman can often make the part to suit any particular installation.

Upfront production investment

[edit]

The development of factory facilities for modular homes requires significant upfront investment. To help address housing shortages in the 2010s, the United Kingdom Government (via Homes England) invested in modular housing initiatives. Several UK companies (for example, Ilke Homes, L&G Modular Homes, House by Urban Splash, Modulous, TopHat and Lighthouse) were established to develop modular homes as an alternative to traditionally-built residences, but failed as they could not book revenues quickly enough to cover the costs of establishing manufacturing facilities.

IIke Homes opened a factory in Knaresborough, Yorkshire in 2018, and Homes England invested £30m in November 2019,[5] and a further £30m in September 2021.[6] Despite a further fund-raising round, raising £100m in December 2022,[7][8] Ilke Homes went into administration on 30 June 2023,[9][10] with most of the company's 1,150 staff made redundant,[11] and debts of £320m,[12] including £68m owed to Homes England.[13]

In 2015 Legal & General launched a modular homes operation, L&G Modular Homes, opening a 550,000 sq ft factory in Sherburn-in-Elmet, near Selby in Yorkshire.[14] The company incurred large losses as it invested in its factory before earning any revenues; by 2019, it had lost over £100m.[15] Sales revenues from a Selby project, plus schemes in Kent and West Sussex, started to flow in 2022, by which time the business's total losses had grown to £174m.[16] Production was halted in May 2023, with L&G blaming local planning delays and the COVID-19 pandemic for its failure to grow its sales pipeline.[17][18] The enterprise incurred total losses over seven years of £295m.[19]

Market acceptance

[edit]
Raines Court is a multi-story modular housing block in Stoke Newington, London, one of the first two residential buildings in Britain of this type. (December 2005)

Some home buyers and some lending institutions resist consideration of modular homes as equivalent in value to site-built homes.[citation needed] While the homes themselves may be of equivalent quality, entrenched zoning regulations and psychological marketplace factors may create hurdles for buyers or builders of modular homes and should be considered as part of the decision-making process when exploring this type of home as a living and/or investment option. In the UK and Australia, modular homes have become accepted in some regional areas; however, they are not commonly built in major cities. Modular homes are becoming increasingly common in Japanese urban areas, due to improvements in design and quality, speed and compactness of onsite assembly, as well as due to lowering costs and ease of repair after earthquakes. Recent innovations allow modular buildings to be indistinguishable from site-built structures.[20] Surveys have shown that individuals can rarely tell the difference between a modular home and a site-built home.[21]

Modular homes vs. mobile homes

[edit]

Differences include the building codes that govern the construction, types of material used and how they are appraised by banks for lending purposes. Modular homes are built to either local or state building codes as opposed to manufactured homes, which are also built in a factory but are governed by a federal building code.[22] The codes that govern the construction of modular homes are exactly the same codes that govern the construction of site-constructed homes.[citation needed] In the United States, all modular homes are constructed according to the International Building Code (IBC), IRC, BOCA or the code that has been adopted by the local jurisdiction.[citation needed] In some states, such as California, mobile homes must still be registered yearly, like vehicles or standard trailers, with the Department of Motor Vehicles or other state agency. This is true even if the owners remove the axles and place it on a permanent foundation.[23]

Recognizing a mobile or manufactured home

[edit]

A mobile home should have a small metal tag on the outside of each section. If a tag cannot be located, details about the home can be found in the electrical panel box. This tag should also reveal a manufacturing date.[citation needed] Modular homes do not have metal tags on the outside but will have a dataplate installed inside the home, usually under the kitchen sink or in a closet. The dataplate will provide information such as the manufacturer, third party inspection agency, appliance information, and manufacture date.

Materials

[edit]

The materials used in modular buildings are of the same quality and durability as those used in traditional construction, preserving characteristics such as acoustic insulation and energy efficiency, as well as allowing for attractive and innovative designs thanks to their versatility.[24] Most commonly used are steel, wood and concrete.[25]

  • Steel: Because it is easily moldable, it allows for innovation in design and aesthetics.
  • Wood: Wood is an essential part of most modular buildings. Thanks to its lightness, it facilitates the work of assembling and moving the prefabricated modules.
  • Concrete: Concrete offers a solid structure that is ideal for the structural reinforcement of permanent modular buildings. It is increasingly being used as a base material in this type of building, thanks to its various characteristics such as fire resistance, energy savings, greater acoustic insulation, and durability.[26]

Wood-frame floors, walls and roof are often utilized. Some modular homes include brick or stone exteriors, granite counters and steeply pitched roofs. Modulars can be designed to sit on a perimeter foundation or basement. In contrast, mobile homes are constructed with a steel chassis that is integral to the integrity of the floor system. Modular buildings can be custom built to a client's specifications. Current designs include multi-story units, multi-family units and entire apartment complexes. The negative stereotype commonly associated with mobile homes has prompted some manufacturers to start using the term "off-site construction."

New modular offerings include other construction methods such as cross-laminated timber frames.[27]

Financing

[edit]

Mobile homes often require special lenders.[28]

Modular homes on the other hand are financed as site built homes with a construction loan

Standards and zoning considerations

[edit]

Typically, modular dwellings are built to local, state or council code, resulting in dwellings from a given manufacturing facility having differing construction standards depending on the final destination of the modules.[29] The most important zones that manufacturers have to take into consideration are local wind, heat, and snow load zones.[citation needed] For example, homes built for final assembly in a hurricane-prone, earthquake or flooding area may include additional bracing to meet local building codes. Steel and/or wood framing are common options for building a modular home.

Some US courts have ruled that zoning restrictions applicable to mobile homes do not apply to modular homes since modular homes are designed to have a permanent foundation.[citation needed] Additionally, in the US, valuation differences between modular homes and site-built homes are often negligible in real estate appraisal practice; modular homes can, in some market areas, (depending on local appraisal practices per Uniform Standards of Professional Appraisal Practice) be evaluated the same way as site-built dwellings of similar quality. In Australia, manufactured home parks are governed by additional legislation that does not apply to permanent modular homes. Possible developments in equivalence between modular and site-built housing types for the purposes of real estate appraisals, financing and zoning may increase the sales of modular homes over time.[30]

CLASP (Consortium of Local Authorities Special Programme)

[edit]

The Consortium of Local Authorities Special Programme (abbreviated and more commonly referred to as CLASP) was formed in England in 1957 to combine the resources of local authorities with the purpose of developing a prefabricated school building programme. Initially developed by Charles Herbert Aslin, the county architect for Hertfordshire, the system was used as a model for several other counties, most notably Nottinghamshire and Derbyshire. CLASP's popularity in these coal mining areas was in part because the system permitted fairly straightforward replacement of subsidence-damaged sections of building.

Building strength

[edit]
Modular Home being built in Vermont photo by Josh Vignona
Modular home in Vermont

Modular homes are designed to be stronger than traditional homes by, for example, replacing nails with screws, adding glue to joints, and using 8–10% more lumber than conventional housing.[31] This is to help the modules maintain their structural integrity as they are transported on trucks to the construction site. However, there are few studies on the response of modular buildings to transport and handling stresses. It is therefore presently difficult to predict transport induced damage.[1]

When FEMA studied the destruction wrought by Hurricane Andrew in Dade County Florida, they concluded that modular and masonry homes fared best compared to other construction.[32]

CE marking

[edit]

The CE mark is a construction norm that guarantees the user of mechanical resistance and strength of the structure. It is a label given by European community empowered authorities for end-to-end process mastering and traceability.[citation needed]

All manufacturing operations are being monitored and recorded:

  • Suppliers have to be known and certified,
  • Raw materials and goods being sourced are to be recorded by batch used,
  • Elementary products are recorded and their quality is monitored,
  • Assembly quality is managed and assessed on a step by step basis,
  • When a modular unit is finished, a whole set of tests are performed and if quality standards are met, a unique number and EC stamp is attached to and on the unit.

This ID and all the details are recorded in a database, At any time, the producer has to be able to answer and provide all the information from each step of the production of a single unit, The EC certification guaranties standards in terms of durability, resistance against wind and earthquakes.[citation needed]

Open modular building

[edit]

The term Modularity can be perceived in different ways. It can even be extended to building P2P (peer-to-peer) applications; where a tailored use of the P2P technology is with the aid of a modular paradigm. Here, well-understood components with clean interfaces can be combined to implement arbitrarily complex functions in the hopes of further proliferating self-organising P2P technology. Open modular buildings are an excellent example of this. Modular building can also be open source and green. Bauwens, Kostakis and Pazaitis[33] elaborate on this kind of modularity. They link modularity to the construction of houses.

This commons-based activity is geared towards modularity. The construction of modular buildings enables a community to share designs and tools related to all the different parts of house construction. A socially-oriented endeavour that deals with the external architecture of buildings and the internal dynamics of open source commons. People are thus provided with the tools to reconfigure the public sphere in the area where they live, especially in urban environments. There is a robust socializing element that is reminiscent of pre-industrial vernacular architecture and community-based building.[34]

Some organisations already provide modular housing. Such organisations are relevant as they allow for the online sharing of construction plans and tools. These plans can be then assembled, through either digital fabrication like 3D printing or even sourcing low-cost materials from local communities. It has been noticed that given how easy it is to use these low-cost materials are (for example: plywood), it can help increase the permeation of these open buildings to areas or communities that lack the know-how or abilities of conventional architectural or construction firms. Ergo, it allows for a fundamentally more standardised way of constructing houses and buildings. The overarching idea behind it remains key - to allow for easy access to user-friendly layouts which anyone can use to build in a more sustainable and affordable way.

Modularity in this sense is building a house from different standardised parts, like solving a jigsaw puzzle.

3D printing can be used to build the house.

The main standard is OpenStructures and its derivative Autarkytecture.[35]

Research and development

[edit]

Modular construction is the subject of continued research and development worldwide as the technology is applied to taller and taller buildings. Research and development is carried out by modular building companies and also research institutes such as the Modular Building Institute[36] and the Steel Construction Institute.[37]

See also

[edit]
  • Affordable housing
  • Alternative housing
  • Commercial modular construction
  • Construction 3D printing
  • Container home
  • Kit house
  • MAN steel house
  • Manufactured housing
  • Modern methods of construction
  • Modular design
  • Portable building
  • Prefabrication
  • Open-source architecture
  • Open source hardware
  • OpenStructures
  • Prefabricated home
  • Relocatable buildings
  • Recreational vehicles
  • Shipping container architecture
  • Stick-built home
  • Tiny house movement
  • Toter

References

[edit]
  1. ^ a b Lacey, Andrew William; Chen, Wensu; Hao, Hong; Bi, Kaiming (2018). "Structural Response of Modular Buildings – An Overview". Journal of Building Engineering. 16: 45–56. doi:10.1016/j.jobe.2017.12.008. hdl:20.500.11937/60087.
  2. ^ Lacey, Andrew William; Chen, Wensu; Hao, Hong; Bi, Kaiming (2019). "Review of bolted inter-module connections in modular steel buildings". Journal of Building Engineering. 23: 207–219. doi:10.1016/j.jobe.2019.01.035. S2CID 86540434.
  3. ^ "Halley VI Research Station – British Antarctic Survey". Bas.ac.uk. Retrieved 2016-05-03.
  4. ^ "Why Build Modular?". Modular.org. Retrieved 2016-05-03.
  5. ^ Morby, Aaron (4 November 2019). "Government pumps £30m into modular house builder". Construction Enquirer. Retrieved 14 March 2024.
  6. ^ Morby, Aaron (27 September 2021). "Ilke Homes raises £60m for top 10 house builder plan". Construction Enquirer. Retrieved 14 March 2024.
  7. ^ Morby, Aaron (6 December 2022). "Ilke Homes pulls off £100m record-breaking fund raise". Construction Enquirer. Retrieved 14 March 2024.
  8. ^ O'Connor, Rob (6 December 2022). "ilke Homes announces new £100m investment". Infrastructure Intelligence. Retrieved 14 March 2024.
  9. ^ Gardiner, Joey (30 June 2023). "Ilke Homes sinks into administration with most of firm's 1,100 staff set to lose their jobs". Building. Retrieved 14 March 2024.
  10. ^ Riding, James (30 June 2023). "Modular house builder Ilke Homes enters administration with majority of staff to be made redundant". Inside Housing. Retrieved 14 March 2024.
  11. ^ Morby, Aaron (30 June 2023). "Ilke Homes falls into administration". Construction Enquirer. Retrieved 14 March 2024.
  12. ^ Prior, Grant (25 August 2023). "Ilke Homes went under owing £320m". Construction Enquirer. Retrieved 14 March 2024.
  13. ^ Willmore, James (14 February 2024). "Homes England to lose most of £68.8m it is owed from Ilke Homes following collapse". Inside Housing. Retrieved 14 March 2024.
  14. ^ Dale, Sharon (11 May 2020). "Head of Legal & General modular homes factory reveals plans for its future". Yorkshire Post. Retrieved 20 March 2024.
  15. ^ Morby, Aaron (30 November 2020). "L&G modular homes losses exceed £100m". Construction Enquirer. Retrieved 20 March 2024.
  16. ^ Morby, Aaron (3 October 2022). "L&G modular homes amassed loss deepens to £174m". Construction Enquirer. Retrieved 20 March 2024.
  17. ^ Prior, Grant (4 May 2023). "L&G halts production at modular homes factory". Construction Enquirer. Retrieved 20 March 2024.
  18. ^ Kollewe, Julia (4 May 2023). "Legal & General halts new production at modular homes factory near Leeds". The Guardian.
  19. ^ Morby, Aaron (6 November 2023). "L&G modular homes foray amassed £295m of losses". Construction Enquirer. Retrieved 20 March 2024.
  20. ^ fab, ukporta (19 August 2020). "prefabricated structures". ukportaprefab. Retrieved 4 September 2020.
  21. ^ "Factory-Built Construction and the American Homebuyer: Perceptions and Opportunities" (PDF). Huduser.gov. p. 9. Retrieved 2017-09-10.
  22. ^ Solutions, Dryside Property – Jennifer Mitchell and Magic Web. "Mobile homes vs Manufactured homes vs Modular homes". Drysideproperty.com. Retrieved 2018-03-09.
  23. ^ "HCD Manufactured and Mobile Homes". Hcd.ca.gov.
  24. ^ Métodos modernos de construcción (MMC): Fabricación modular. Upv.es. 2020-10-02 Retrieved 2022-09-08
  25. ^ A guide to the latest modular building construction materials. Hydrodiseno.com. 2021-12-14 Retrieved 2022-09-05
  26. ^ Construcción modular en hormigón: una tendencia al alza (PDF). Andece.org. p. 53. Retrieved 2022-07-06
  27. ^ "Prefabricated Housing Module Advances Wood Research at the University of British Columbia | 2017-05-15T00:00:00 | Perkins + Will News". Archived from the original on 2019-03-31. Retrieved 2019-03-31.
  28. ^ "HUD Financing Manufactured (Mobile) Homes". Portal.hud.gov. Archived from the original on 2016-05-03. Retrieved 2016-05-03.
  29. ^ "Australian Government modular home regulations". Austlii.edu.au. Retrieved 2007-10-21.
  30. ^ "Building Codes for Modular Homes". Modularhomesnetwork.com. Retrieved 2010-08-06.
  31. ^ "Disruptive Development: Modular Manufacturing In Multifamily Housing" (PDF). p. 35. Retrieved 10 September 2017.
  32. ^ "FIA 22, Mitigation Assessment Team Report: Hurricane Andrew in Florida (1993)". Fema.gov.
  33. ^ Bouwens, M., Kostakis, V., & Pazaitis, A. 2019. The Commons Manifesto. University of Westminster Press, London, pg. 24
  34. ^ Bouwens, M., Kostakis, V., & Pazaitis, A. 2019. The Commons Manifesto. University of Westminster Press, London, pg. 25
  35. ^ "Thomas Lommée & Christiane Hoegner - Autarkytecture | z33". Archived from the original on 2014-12-31. Retrieved 2015-01-01.
  36. ^ "Modular Building Institute". Modular.org.
  37. ^ "The Steel Construction Institute (SCI) UK Global Steel Expertise". Steel-sci.com.

34 - "Volumetric modular construction trend gaining groun d". https://www.aa.com.tr/en/corporate-news/volumetric-modular-construction-trend-gaining-ground/2357158 06.09.2021

 

Driving Directions in Arapahoe County


Driving Directions From VRCC Veterinary Specialty and Emergency Hospital to Royal Supply South
Driving Directions From Mullen High School to Royal Supply South
Driving Directions From Arapahoe County Assessor to Royal Supply South
Driving Directions From The Home Depot to Royal Supply South
Driving Directions From St. Nicks Christmas and Collectibles to Royal Supply South
Driving Directions From Wells Fargo ATM to Royal Supply South
Driving Directions From Molly Brown House Museum to Royal Supply South
Driving Directions From Molly Brown House Museum to Royal Supply South
Driving Directions From Colorado Freedom Memorial to Royal Supply South
Driving Directions From The Aurora Highlands North Sculpture to Royal Supply South
Driving Directions From History Colorado Center to Royal Supply South
Driving Directions From Denver Museum of Nature & Science to Royal Supply South

Reviews for Royal Supply South


View GBP